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1
COMPILER OPTIMIZATION FOR MANY
INTEGRATED CORE PROCESSORS

RELATED APPLICATION INFORMATION

This application claims priority to provisional application
Ser. No. 61/970,150, filed on Mar. 25, 2014, incorporated
herein by reference.

BACKGROUND

1. Technical Field

The present invention relates to a system and method for
compiler optimization, and more particularly, to compiler
optimizations for manycore processors.

2. Description of the Related Art

Manycore accelerators (e.g., manycore coprocessors) are
being increasingly used for high performance computing.
For example, 54 of the top 500 supercomputers are powered
by manycore accelerators on the new list released in June
2013, which is a fourfold increase compared with two years
ago. Since the massive parallel architectures of manycore
accelerators can support running hundreds and thousands of
threads in parallel, they can provide order of magnitude
better performance and efficiency for parallel workloads as
compared to multicore CPUs.

Although manycore accelerators have the ability to pro-
vide high performance, achieving performance on them
remains a challenging issue. It usually requires very high
expertise and effort from programmers to understand and
make good use of the underneath architectures. For example,
to develop high performance GPU applications, program-
mers need to be aware of the memory hierarchy and the
warp-based thread organization, given their dominant
impact on performance. Many static and runtime techniques
have been developed to relieve the optimization burden from
programmers for developing GPU applications. However,
there is still a significant performance gap between compiler
optimized code and highly tuned CUDA code.

SUMMARY

A method for source-to-source transformation for com-
piler optimization for one or more many integrated core
(MIC) coprocessors to hide data transfer overhead between
one or more central processing units (CPUs) and the MICs
with the computation. Data dependencies in one or more
candidate loops and data elements used in each iteration are
identified for one or more arrays. The one or more candidate
loops are profiled to find a proper number m, wherein data
transfer and computation for m iterations take an equal
amount of time. An outer loop outside the candidate loop is
created, wherein each iteration of the outer loop executes m
iterations of the candidate loop. Data streaming is per-
formed, and the data streaming includes determining opti-
mum buffer size for one or more arrays and inserting code
before the outer loop to create one or more optimum sized
buffers, overlapping data transfer between the CPUs and
MICs with the computation, reusing the buffers to reduce
memory footprint employed on the MICs during the data
transfer, and reusing threads on the MICs to avoid repeatedly
launching kernels on the MICs for asynchronous data trans-
fer.

A method for source-to-source transformation for com-
piler optimization for one or more many integrated core
(MIC) coprocessors, including regularizing irregular
memory accesses in a candidate loop by reordering compu-
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2

tations and adjusting array accesses according to the regu-
larized irregular array structures to enable data streaming on
the one or more MICs during data transfer and vectorization
during computation. All irregular array accesses in a candi-
date loop that do not use a loop index i as an array index are
identified,

irregular array accesses are regularized automatically, with
array indices employed in all memory access being set to the
loop index i, and regularization overhead is hidden by
overlapping regularization with the data transfer and the
computations when data streaming is employed.

A system for source-to-source transformation for com-
piler optimization for one or more many integrated core
(MIC) coprocessors, including an identification module con-
figured to identify data dependencies in one or more candi-
date loops and data elements used in each iteration for one
or more arrays; a profiling module configured to profile the
one or more candidate loops to find a proper number m,
wherein data transfer and computation for m iterations take
an equal amount of time; and a loop creation module
configured to create an outer loop outside the candidate loop,
wherein each iteration of the outer loop executes m itera-
tions of the candidate loop. A data streaming module is
employed to perform data streaming, wherein the data
streaming includes determining optimum buffer size for one
or more arrays and inserting code before the outer loop to
create one or more optimum sized buffers; overlapping data
transfer between one or more central processing units
(CPUs) and the MICs with the computation to hide data
transfer overload; reusing the buffers to reduce memory
employed on the MICs during the data transfer; and reusing
threads on the MICs to repeatedly launch kernels on the
MICs for asynchronous data transfer.

These and other features and advantages will become
apparent from the following detailed description of illustra-
tive embodiments thereof, which is to be read in connection
with the accompanying drawings.

BRIEF DESCRIPTION OF DRAWINGS

The disclosure will provide details in the following
description of preferred embodiments with reference to the
following figures wherein:

FIG. 1 is a block/flow diagram illustratively depicting a
system/method for compiler optimization by automatically
applying data streaming to MIC code to reduce data transfer
overhead is shown in accordance with the present principles;

FIG. 2 is a block/flow diagram illustratively depicting a
system/method for compiler optimization by automatically
rearranging ordering of computations is shown in accor-
dance with the present principles;

FIG. 3 is a block/flow diagram illustratively depicting a
system/method for compiler optimization by using a shared
memory mechanism for transferring large pointer based data
structures between a CPU and a MIC is shown in accordance
with the present principles in accordance with the present
principles; and

FIG. 4 is a block/flow diagram illustratively depicting a
system/method for compiler optimization is shown in accor-
dance with the present principles.

DETAILED DESCRIPTION OF PREFERRED
EMBODIMENTS

In accordance with the present principles, systems and
methods are provided for automatically optimizing perfor-



US 9,471,289 B2

3

mance on Many Integrated Core Coprocessors (MICs) (e.g.,
Intel® Xeon® Phi Coprocessors).

It has been shown that achieving good performance on
MICs (e.g., Intel® Xeon® Phi Coprocessors) is not a
straightforward task for programmers. For example, one
may compare the speedups of a set of Open Multi-Process-
ing (OpenMP™) benchmarks on a multicore central pro-
cessing unit (CPU) and an Intel® Xeon® Phi Coprocessors,
with all speedups are normalized to the CPU versions. These
codes are intrinsically parallel with minimal communication
and expected to have high performance on manycore pro-
cessors. The parallel performance on the CPU may be
measured using 4-6 threads, while the Intel® Xeon® Phi
Coprocessors performance may be measured using 200
threads.

In this situation, the Intel® Xeon® Phi Coprocessors
performs poorly for eight many benchmarks, as compared to
the CPU. For some of the benchmarks, the Xeon Phi
performance is even worse than the sequential performance
on the CPU. This shows that simply parallelizing the codes
using OpenMP™ programs does not give increased perfor-
mance on the Intel® Xeon® Phi Coprocessors. Given the
significant parallelism the codes have and the conventional
optimizations (e.g., blocking, vectorization, and array-of-
structures to structure-of-array conversion) the Intel® com-
piler has done, it is shown that achieving performance on
manycore accelerators such as the Intel® Xeon® Phi pro-
cessor requires more optimizations specific to the new
architecture. Furthermore, since the manycore architectures
are evolving rapidly, the present principles may be applied
to solve the optimization problem by using a compiler to
automatically perform the optimizations while letting pro-
grammers focus on parallelism extraction.

The present principles may be employed to solve perfor-
mance issues (e.g., for programs offloaded onto MICs (e.g.,
Intel® Xeon® Phi coprocessors)). For illustration purposes,
three performance issues for programs offloaded onto MICs
which the compiler optimizations according to the present
principles may solve will be discussed. The compiler opti-
mizations may improve program performance and memory
utilization on the accelerators. Although the optimizations
are presented in the context of Intel® Xeon® Phi coproces-
sors, the techniques can also be applied to other emerging
manycore accelerators (e.g., Tilera Tile-Gx processors).

In one embodiment, the first optimization, data streaming,
is may reduce the overhead of transferring data between the
CPU and coprocessor, which often takes a large portion of
the total execution time. The optimization may automati-
cally overlap the data transfer with the computation to hide
the data transfer overhead. A compiler technique according
to the present principles may be to divide each parallel loop
into blocks to make the computation time and data transfer
time equal (e.g., to determine and/or set a proper buffer size),
which may maximize the performance while minimizing the
device memory usage. The threads on the accelerator may be
reused to reduce the overhead of launching kernels.

In one embodiment, the second optimization, regulariza-
tion, may handle loops with irregular memory accesses,
which usually show poor performance on the accelerators.
The optimization may rearrange the ordering of computa-
tions to regularize the memory accesses in a loop. It may
enable data streaming and vectorization for the manycore
accelerators in the presence of irregular memory accesses. It
also may improve the cache locality, relieving any memory
bandwidth bottlenecks.

In another embodiment, current data transfer mechanisms
do not work efficiently for large pointer-based data struc-
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tures. Many applications that use such data structures cannot
benefit from the use of accelerators. However, a new shared
memory mechanism to support efficiently transferring large
pointer-based data structures between the CPU and the
coprocessor may be established by employing the present
principles. In one embodiment, the memory allocation
scheme may optimize the memory usage on the accelerator.
An augmented design of pointers may be introduced for fast
translating pointers between their CPU and accelerator
memory addresses.

The compiler optimizations according to the present prin-
ciples may be implemented as source-to-source transforma-
tions using, for example, an Apricot compiler, which is a
source-to-source compiler that may automatically identify
offloadable code regions, and may insert offload primitives.
In one embodiment, the code transformations according to
the present principles may be performed at the Abstract
Syntax Tree (AST) level, and codes may be parsed into AST
trees using, for example, pycparser, according to one
embodiment. Experimental results show that the optimiza-
tions according to the present principles may improve the
performance of many benchmarks (e.g., PAR, SEC, Phoe-
nix, NAS, Rodinia). Overall, the optimizations according to
the present principles may improve the MIC performance by
1.63x-70.33x.

In one embodiment, the performance of one or more sets
of benchmarks (e.g., OpenMP™) on machines equipped
with one or more Intel® Xeon® Phi processors may be
diminished and/or run-time errors may result when directly
executing OpenMP™ parallel loops on coprocessors. The
root causes of these issues may be data transfer time between
the CPU and the coprocessor, irregular memory accesses,
and/or limited shared memory space between the CPU and
the coprocessors.

In one embodiment, novel compiler systems and methods
according to the present principles may be employed to
solve these issues. These systems and methods may improve
the accelerator performance and enable the execution of the
computation tasks that cannot be executed on the accelera-
tors using conventional systems/methods. The compiler
methods also reduce the expertise and effort required for
programming the accelerators. Although the techniques are
described in the context of the Intel® Xeon® Phi coproces-
sor, it is noted that they may also be applied to other
manycore accelerators.

Embodiments described herein may be entirely hardware,
entirely software or including both hardware and software
elements. In a preferred embodiment, the present invention
is implemented in software, which includes but is not limited
to firmware, resident software, microcode, etc.

Embodiments may include a computer program product
accessible from a computer-usable or computer-readable
medium providing program code for use by or in connection
with a computer or any instruction execution system. A
computer-usable or computer readable medium may include
any apparatus that stores, communicates, propagates, or
transports the program for use by or in connection with the
instruction execution system, apparatus, or device. The
medium can be magnetic, optical, electronic, electromag-
netic, infrared, or semiconductor system (or apparatus or
device) or a propagation medium. The medium may include
a computer-readable storage medium such as a semiconduc-
tor or solid state memory, magnetic tape, a removable
computer diskette, a random access memory (RAM), a
read-only memory (ROM), a rigid magnetic disk and an
optical disk, etc.
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A data processing system suitable for storing and/or
executing program code may include at least one processor
coupled directly or indirectly to memory elements through a
system bus. The memory elements can include local
memory employed during actual execution of the program
code, bulk storage, and cache memories which provide
temporary storage of at least some program code to reduce
the number of times code is retrieved from bulk storage
during execution. Input/output or I/O devices (including but
not limited to keyboards, displays, pointing devices, etc.)
may be coupled to the system either directly or through
intervening I/O controllers.

Network adapters may also be coupled to the system to
enable the data processing system to become coupled to
other data processing systems or remote printers or storage
devices through intervening private or public networks.
Modems, cable modem and Ethernet cards are just a few of
the currently available types of network adapters.

Prior to discussing various embodiments of the present
principles in detail, some background on MIC architecture
(e.g., Intel® MIC architecture) used by Intel® Xeon® Phi
coprocessors. The Intel® MIC Architecture is designed to
enable high levels of thread and Single Instruction, Multiple
Data (SIMD) parallelism. The most recent Xeon Phi pro-
cessor contains 61 cores connected through a ring bus. Each
core is a modified first-generation Pentium processor that
supports 4 simultaneous threads. Since one core is reserved
for the OS use, the user application can use up to 240
simultaneous threads in total. While the single thread per-
formance of Intel® MIC is worse than that of the modern
CPUs, it provides more scalable performance for parallel
applications.

To further increase the parallelism, Intel® MIC supports
512-bit SIMD operations. Vectorization is thereby a key to
achieve performance. All cores in the Intel® MIC Architec-
ture may share an 8 GB shared memory with coherence 1.2
cache. Therefore, the memory management is similar to that
on the CPU. However, because Intel® MIC as a coprocessor
may have no disk to access, it may have no swap space and
thus may not switch out unused memory pages. More
efficient memory usage is required to run the applications
that have big memory footprints. Since the Intel® MIC
Architecture is x86 compatible, it supports standard pro-
gramming languages such as fortran and C/C++ and can run
legacy CPU code. It can also utilize existing parallelization
tools for CPUs.

It is noted that the coprocessors may employ an offload
mode. Applications may have a significant portion of serial
code. The serial code is usually best executed on a modern
CPU, which has a higher clock speed and a more advanced
architecture. Only the highly-parallel code region of an
application is offloaded from the CPU to the coprocessors to
achieve more scalable performance. In the offload mode, an
application is always started on the CPU. Once the execution
gets into a parallel code region, it copies the parallel code
and input data from the CPU to the coprocessor through the
PCI-E bus and then executes the parallel code on the
coprocessors. After the parallel code region is done, the
output data may be copied back from the coprocessor to the
CPU and the execution may continue on the CPU.

Intel® provides Language Extension for Offload (LEO)
for programming the offload mode. It is a set of high-level
directives designed to improve the programmer productivity.
When using LEO, programmers can choose which code to
offload and need to specify the input and output data for the
offloaded code regions. Pseudocode 1, below, shows a LEO
code example extracted from the Blackscholes benchmark.
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The offloaded code region is a loop parallelized with
OpenMP™ pragmas. An offload pragma is inserted before
the loop to specify the offloaded code region. The target
clause gives the target coprocessor where the code will be
offloaded. In this case, it is the first MIC device. The in and
out clauses is used to declare the input and output data for
the offloaded code region.

Pseudocode 1: LEO code example from
Blackscholes benchmark

#pragma offload target(mic:0) \
in(sptprice, .. .:length(numOptions))\
out(prices:length(numOptions))
{
#pragma omp parallel for private(i, price)
for (i=0; i <numOptions; i++) {
price = BlkSchlsEqEuroNoDiv(sptpricel[i], . .
prices[i] = price;

- 0);

In addition to explicitly specifying the data transfer, LEO
also supports an implicit data transfer model with shared
memory between the CPU and the coprocessor. A runtime
(e.g., MYO) may be employed to automate the procedure of
transferring the shared data between the CPU and the
coprocessor. Pseudocode 2, below, shows a code example
using MYO. In the example, variable v marked with Cilk
shared and the data allocated using Offload shared malloc is
shared between the CPU and the coprocessor. The Cilk
offload clause is used to offload function foo( ) to the
coprocessor. The data communication of variable V only
occurs at the boundary of the offloaded code region accord-
ing to the MYO scheme.

Pseudocode 2: A LEO code example using
shared memory between CPU and processor

Cilk shared int *v;
Cilk shared void foo( ) {
for (inti = 0; i <35; i++) {
v[i] =i

}

int main( ) {
int size = sizeof(int)*5;
v = ( Cilk shared int *)Offload shared malloc(size);
Cilk offload foo( );
return 0;

}

It is noted that the present principles may be employed to
significantly improve the performance of applications that
offload computations to many core processors by source to
source compiler optimizations according to various embodi-
ments. Three compiler optimizations will be discussed in
detail below as illustrations of the present principles.

According to one embodiment, a novel data streaming
technique, which overlaps data transfer between the multi-
core and manycore processors with computation on these
processors to hide the data transfer overhead, may be
employed according to the present principles. Optimal buf-
fer sizes to be used on the manycore processors may be
identified, and the buffers may be reused for efficient data
transfer. Reuse of buffers may significantly reduce the
memory used on the manycore processor for data transfers.
Also, the overhead of repeatedly launching kernels on the
manycore processor for asynchronous data transfers may be



US 9,471,289 B2

7

avoided by reusing the threads on the manycore processor
according to the present principles.

In another embodiment, regularization of irregular
memory accesses may be achieved by reordering computa-
tions. This may enable data streaming and vectorization on
the manycore processor, even when memory access patterns
in the original source code are irregular. Regularization also
may improve the cache locality and may eliminate the
memory bandwidth bottleneck. In another embodiment, a
shared memory mechanism according to the present prin-
ciples may provide efficient support for transferring large
pointer-based data structures between the host and the
manycore processor. The memory allocation system and
method according to the present principles improves utili-
zation of the limited memory on the manycore processor. A
new method for fast translation of pointers between the
multicore and manycore memory address spaces may also
be employed. Experimental evaluations have shown that the
compiler optimizations according to the present principles
benefit at least nine out of twelve benchmarks and achieve
at least 1.63x70.33x speedups over the original, parallel
implementations of these benchmarks on the manycore
processor.

Referring now to FIG. 1, a block/flow diagram illustra-
tively depicting a system/method for compiler optimization
by automatically applying data streaming to MIC code to
reduce data transfer overhead is illustratively depicted in
accordance with the present principles. In one embodiment,
data streaming optimization according to the present prin-
ciples may lower data transfer overhead for a set of bench-
marks using a compiler transformation for data streaming
and/or one or more optimizations for further reducing time
and memory overhead according to the present principles.

In one embodiment, input may be received in block 102,
and data dependencies may be identified in a candidate loop
in block 104. Data elements used in each iteration for all
arrays may be identified in block 106. A loop may be profiled
in block 108 to find a proper number (m), where data transfer
and computation for m iterations may take the same amount
of time. An outer loop may be created outside the original
loop that was profiled in block 110. If all arrays used in the
original loop have been processed e.g., there are no more
arrays that have not been identified and/or processed), and a
last array is reached, the system/method may end in block
114. If the last array has not been reached in block 112, a
buffer size (s) for one or more arrays may be calculated in
block 116.

In one embodiment, if data elements used in each iteration
are determined to be not used in subsequent iterations (e.g.,
dead afterwards) in block 118, code may be inserted before
the outer loop to create two buffers of size s on one or more
MICs in block 120. If data elements used in each iteration
are determined to not be dead afterwards in block 118, code
may be inserted before the outer loop to create n/m buffers
of size s on one or more MICs in block 122.

In one embodiment, code may be inserted before the outer
loop to asynchronously copy the first segment (e.g., size s)
of one or more arrays to a first MIC buffer in block 124.
Code may be inserted at the beginning of the outer loop to
copy a next segment (e.g., size s) of one or more arrays to
a next available buffer in block 126. Code may also be
inserted before the inner loop (e.g., original loop) to wait
until a data transfer initiated in a previous iteration (e.g., of
the outer loop) has completed in block 128. In one embodi-
ment, asynchronous offload may be employed for the inner
loop (e.g., original loop) in block 130, and code may be
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inserted to free all buffers after the outer loop in block 132.
The process may be repeated until reaching a last array in
block 112.

In one embodiment, source-to-source transformation for
automatically applying data streaming to MIC code may be
performed according to the present principles. Data transfer
may be automatically overlapped with computation to
reduce the data transfer overhead, and code segments may
be enabled to be executed on a MIC when an entire data set
cannot be held in the memory buffer of a MIC. Buffer
allocation may minimize the memory usage on a MIC while
achieving much better performance than conventional sys-
tems, and data may be transferred in small blocks rather than
transferring data as an entire chunk using data streaming
according to the present principles.

In one embodiment, a compiler optimization, (e.g., data
streaming), may automatically overlap the data transfer with
computation to hide the data transfer time. In conventional
systems, to execute a code region on a coprocessor, the
computation begins after completion of transferring all the
input data to a coprocessor. Therefore the total execution
time may be the computation time plus the data transfer
time. With data streaming according to the present prin-
ciples, the data transfer and computation may be divided into
multiple blocks and may be performed in a pipelined style.
The i-th computation block, which may be a subset of
continuous iterations, may start right after the i-th data block
is transferred to the coprocessor and overlaps with the data
transfer of (i+1)-th block. Total execution time may then be
reduced to the computation time plus the data transfer time
of the first block according to the present principles.

In one embodiment, code transformation for data stream-
ing may be performed according to the present principles.
For illustrative purposes, the loop described in Pseudocode
1 is employed as an example. Pseudocode 3, below, shows
a transformed loop, which may overlap the data transfer of
array “sptprice” (as shown in the original loop in Pseudo-
code 1) with the computation in the loop body (e.g., the
calculation of function BlkSchlsEqEuroNoDiv( )). Accord-
ing to the present principles.

Pseudocode 3: Transformed Blackscholes loop
after applying data streaming

// allocate memory space on the coprocessor
#pragma offload target(mic:0) \
nocopy(sptprice[0:numOptions] : alloc if(1) free if(0)) \
nocopy . ..\
in(blocksize, price : alloc if(1) free if(0))
{3
// asynchronous data transfer for the first block
#pragma offload transfer target(mic:0) \
in(sptprice[0:blocksize] : alloc if(0) free if(0)) \
in. .\
signal(psptprice)
for(k=0; k <numOptions/blocksize;k++ {
// asynchronous data transfer for the (k+1)-th block
if(k <numOptions/blocksize-1){

start = (k+1) * blocksize;

#pragma offload transfer target(mic:0) \
in(sptprice[start:blocksize] : alloc if(0) free if(0)) \
in ..\
signal(start)

// perform the k-th computation block
start = k * blocksize;
#pragma offload target(mic:0) wait(start) \
out(prices[start:blocksize]: alloc if(0) free if(0) )
#pragma omp parallel for private(i, price) \
num threads(THREADS MIC)
for (i=start; i <start+blocksize; i++) {
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-continued

Pseudocode 3: Transformed Blackscholes loop
after applying data streaming

price = BlkSchlsEqEuroNoDiv( sptprice [i], ...);
prices[i] = price;

}

// free memory space on the coprocessor

#pragma offload target(mic:0) \
nocopy(sptprice[0:numOptions] : alloc if(0) free if(1)) \
nocopy . . . \
nocopy(blocksize, price : alloc if(0) free if(1))
¥

In one embodiment, before performing code transforma-
tion, one or more processors may be employed to determine
if data streaming may be applied to a loop. When a loop is
executed in the data streaming system/method, one or more
computation blocks may be started when input data is ready.
Therefore, to automatically apply data streaming, the com-
piler may identify which input data should be employed for
each computation block. According to one embodiment of
the present principles, data streaming may be applied only
when all array indexes in the loop are in the form of a*i+b,
where 1 is the loop index and a and b are constants. This
enables simplified calculation of the data portion that is
employed by one or more computation blocks. Some loops
may include irregular memory accesses, (e.g., C[i]=A[B
[1]D). In this case, the index of array A may depend on an
element of array B. Static analysis cannot determine what
element of array A is accessed in this statement. Thus,
conventional compilers cannot directly divide the transfer of
array A. Systems and methods to regularize this type of
accesses in order to enable data streaming according to the
present principles will be discussed in more detail below
with reference to FIG. 2.

With respect to memory allocation and deallocation,
memory may generally be allocated on the MIC to copy data
to the MIC. However, with data streaming, this may cause
significant time overhead since the allocation procedure may
be invoked many times. To avoid this, memory allocation
may be performed only once before entering the loop in one
embodiment according to the present principles. For each
array, MIC memory for the entire array may be allocated.
For each scalar variable, its value may also be copied to the
MIC at the allocation site. Similarly, all memory space may
be freed after exiting the loop.

In one embodiment, with respect to loop transformation,
to enable data streaming, the loop execution may be divided
into blocks. To implement this, the original loop may be
replaced with a two-level nested loop. The inner loop may
perform a computation block (e.g., a subset of continuous
iterations of the original loop). The outer loop may repeat
until all computations are done. In one embodiment, data
transfer and synchronization primitives may be inserted in
the body of the outer loop to enable pipelined execution. In
the i-th iteration of the outer loop, the data transfer of the
(i+1)-th block may be started first. Then the execution of the
i-th block may be offloaded to the MIC when the data
transfer of the i-th block is done.

It is noted that offloading a loop onto a MIC requires
properly using the MIC memory due to its limited size. The
problem is complicated at least because of the lack of a
directly attached disk. A MIC may simply give errors when
the copied data cannot be fit in the MIC memory. For
example, if a current MIC has at most 8 GB of memory
available and part of that is reserved for the MIC’s operating
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system, many applications that have large memory footprint
cannot be directly offloaded to the MIC using conventional
systems/methods.

In one embodiment, to solve this issue, an optimization
may be employed to reduce the memory usage of data
streaming according to the present principles. When execut-
ing a loop in the data streaming model, MIC memory may
be reserved for just two data blocks (e.g., the data block for
the current and next computation block). All previous data
blocks may not have be used anymore, and their memory
space may be reused. This not only may reduce the memory
usage on the MIC but also may enable the offload of loops
with larger input data.

As compared to the above-mentioned code transforma-
tion, there may be two changes according to one embodi-
ment of the present principles. First MIC memory may be
allocated for only two data blocks for each copied array.
These memory blocks may be reused throughout the loop
execution. Second, the outer loop may include two parts:
one for odd blocks and the other for even blocks, as shown
in Pseudocode 4 below. This may transfer continuous data
blocks into different memory blocks on the MIC. In the loop
example, all even data blocks of array sptprice may be stored
in spt-price blockl and all odd data blocks may be stored in
sptprice block2. The two memory blocks may be reused for
entire array sptprice.

Pseudocode 4: Optimized Blackscholes loop
with reduced memory usage

for(k=0; k <numOptions/blocksize; k++) {
if(k%2==0) { // handle the even blocks
// asynchronous data transfer for the (k+1)-th block
if(k <numOptions/blocksize-1) {

start = (k+1) * blocksize;

#pragma offload transfer target(mic:0) \
in(sptprice[start:blocksize]: into(sptprice
block2[0:blocksize]) alloc if(0) free if(0)) \

A

signal(start)

// perform the k-th computation block
start = k * blocksize;
#pragma offload target(mic:0) wait(start) \
in(blocksize, price) \
out(prices block:length(blocksize) into(prices
[start:blocksize]) alloc if(0) free if(0) )
#pragma omp parallel for private(i, price) num
threads(THREADS MIC)
for (i=0; i <blocksize; i++) {
price = BlkSchlsEqEuroNoDiv( sptprice
blockl[i], ...);
prices block[i] = price;

¥
else { // handle the odd blocks

¥
¥

In one embodiment, a proper block size may be chosen,
as discussed in detail below. Choosing a proper block size
(e.g., number of iterations in a computation block) is critical
to the loop performance on the MIC. A larger block size may
reduce the overhead of launching kernels but may increase
the initial data transfer time. A smaller block size may save
the initial data transfer time but many of kernels may be
launched.

In one example, if given a loop, the total data transfer time
may be assumed to be D, the total computation time may be
assumed to be C, the overhead of launching a kernel may be
assumed to be K, and the loop may be split into N blocks.
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Without data streaming, the total loop execution time may be
D+K+C. With data streaming, the total execution time may
be calculated by using D/N+max{C/N+K, D/N}*(N-1)+(C/
N+K), where D/N is the data transfer time for the first block,
(C/N+K) is the computation time for the last block, and
max{C/N+K, D/N} is the execution for any other block.
When C/N+K>D/N, the N value to minimize the equation
may be sqrt(D/K). When C/N+K=<D/N, the best N value may
be (D-C)/K. In performing experiments, it has been found
that an optimum number of blocks for most benchmarks
may be between 10 and 20.

It is noted that conventional LEO support for asynchro-
nous data transfer and offload requires a kernel to be
launched for each offload. The overhead of launching ker-
nels can be significant, especially if the same kernel is
launched for many times. Optimizations according to the
present principles may reduce this overhead.

In one embodiment, MIC threads may be reused. Since
the overhead of launching kernels may be high, the MIC
threads may be reused to avoid repeated launches of the
same kernels. The conventional Intel® LEO does not pro-
vide support for reusing the MIC threads. To reuse the MIC
threads according to the present principles, only one loop
kernel may be launched using asynchronous offload. While
the kernel may start on the MIC, the CPU may continue to
transfer the next data block onto the MIC in parallel. The
kernel may not end after the computation block is done.
Instead, it may wait for the next data block. The CPU may
send the MIC a signal when the next data block is ready.
Once receiving the signal, the kernel on the MIC may
continue to perform the next block. The kernel may exit
when the entire loop is done. In one embodiment, a lower-
level COI library may be employed to control the synchro-
nization between the CPU and MIC.

In one embodiment, offloads may be merged according to
the present principles. In many applications (e.g., stream-
cluster), there may be multiple offloads in a large loop, as
shown in Pseudocode 5 below. By applying data streaming
to each individual offload, significant overhead may be
caused for launching kernels. To reduce the overhead, small
offloads may be merged into a single large offload. In other
words, instead of offloading the smaller inner loops, the
larger outer loop is offloaded. Although the sequential
execution on the MIC may increase by doing this, the kernel
launching overhead is advantageously greatly reduced.

Pseudocode 5: Multiple offloads
inside a streamcluster loop

for(i=0; i <iter;i++) {

’.#[.)r.agma offload target(mic:0)
’.#[.)r.agma offload target(mic:0)
’.#[.)r.agma offload target(mic:0)

5

It is noted that while the above embodiments and appli-
cations are discussed in detail above, it is contemplated that
other sorts of embodiments and applications may also be
applicable to the systems and methods according to the
present principles.

Referring now to FIG. 2, a block/flow diagram illustra-
tively depicting a system/method for compiler optimization
by automatically rearranging ordering of computations to
enable vectorization and data streaming for MICs including
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irregular memory access patterns is illustratively depicted in
accordance with the present principles. In one embodiment,
regularization of irregular memory accesses may be per-
formed according to the present principles. It is noted that in
real applications, loops may include irregular memory
accesses.

Pseudocode 6 below shows an example from benchmark
srad. Each iteration of the inner loop reads array J and writes
to array dN, dS, dW, and dE. In the expressions, the index
of array J depends on the values of array iN, iS, W, and E.
It is noted that data streaming cannot be directly applied here
since the accesses to array J are not continuous and the
mapping from array elements (e.g., of J) to iterations is
unknown at the compile time.

This irregular access pattern may also prevent many other
compiler optimizations (e.g., automatic vectorization) from
working properly. Vectorization is critical to the MIC per-
formance since the MIC may provide, for example, 512-bit
wide SIMD units. In addition, irregular accesses often
increase the data transfer time since many elements in an
array may not be accessed. Finally, it may decrease the cache
performance due to lack of space locality.

In one embodiment, input may be received in block 202.
A loop head may be regularized, and all array access in a
loop may be adjusted accordingly in block 204. One or more
irregular array accesses that do not use a loop index i as an
array index may be identified in a candidate loop in block
206. The present principles may be employed to determine
whether the value of {(i) may be obtained before entering a
loop for a given irregular access A[f(i)] in block 208. If no,
then regularization fails in block 210, and the process may
end in block 224. If yes, then code may be inserted before
the loop to create an array A' of size n in block 212. Code
may then be inserted to assign values to A' in block 214, and
all A[f(i)] may be replaced with A' [i] in the loop in block
216.

It may be determined in block 218 whether a last irregular
access has been reached. If no, the process continues by
again determining whether the value of f(i) may be obtained
before entering a loop for a given irregular access A[f(i)] in
block 208. If yes, data streaming may be applied in block
220, threads may be created on a central processing unit
(CPU) to perform the code inserted in block 214 in parallel
with the original loop in block 222. Then the process may
end in block 224.

In one embodiment, there may be, for example, a loop as
follows:

In block 204:

for(i=begin; i<end; i=i+stride) {
sum+= A[i];

}

After regularization, the loop may become as follows:

for(i=0; i<(end-begin)/stride; i=i+1)
sum+=A[i*stride+begin];

}

In block 208, the value of (i) can be obtained beforehand
if all valuables (except 1) used in f{i) are not modified
from iteration 0 to i-1.

One embodiment according to the present principles may

be employed to regularize the irregular memory accesses in
a loop for improved MIC performance. It is noted that an
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irregular memory access in a loop may be defined as an
access that does not access elements continuously across
iterations. The regularization procedure according to the
present principles may transform the access so that it
accesses continuous elements across iterations. There are
several common patterns of irregular accesses, examples of
which will be discussed in further detail below.

In one embodiment, reordering of arrays may be per-
formed according to the present principles. Pseudocode 6,
below, shows two common irregular access patterns. In the
first loop, the index of array A may be a value in array B.
This may disable data streaming and vectorization. In the
second loop, the loop stride may be a constant larger than 1,
which is common in benchmark nn. Since many elements
may not be used in the loop, transferring the entire array A
may cause unnecessary data transfer and may also hurt the
cache performance. The two loops may be handled in the
same way after the loop head is regularized (e.g., converting
the loop stride to 1).

In both instances discussed above, the array index may be
an expression that may be composed of constants and
variables calculated before the loop. Since the variables in
the expression may be unchanged in the loop, the expression
(e.g., the array index) may be evaluated outside the loop. To
regularize the loop, a new array, which is a permutation of
the original array A, may be created, as shown in Pseudo-
code 6. The elements in the new array may be sorted
according to the access order in the loop. By replacing the
original array with the new array, all accesses in the loop
may be regularized.

Pseudocode 6: Two examples of
irregular memory access patterns

(a): Irregular access patterns
// loop A
for(i=0; i <N; i++)
task(A[B[i]);
// loop B
for(i=0; i <N; i++)
task(A[i]);
(b): Regularized Loops
// loop A
for(i=0; i <N; i++)
A'li] = A[B[ill;
for(i=0; i <N; i++)
task(A'[i]);
// loop B
for(i=0; i<N; i+=1)
A'[i] = A’[i*10];
for(i=0; i<N; i+=1)
task(A'[i]);

In one embodiment, splitting of loops may be performed
according to the present principles. In real applications,
loops may perform irregular memory accesses at the begin-
ning of each iteration. For example, as shown in Pseudocode
7 below, after the irregular access to array I, the rest of the
accesses may all be regular. In this example, since only
parallel loops are being considered (e.g., no cross-iteration
dependences in the loops), the irregular memory access may
be safely split from the rest of the loop body in this case.
Pseudocode 8, below, shows the transformed srad loop after
splitting, where all irregular accesses are performed in the
first loop and make the second loop regular. After splitting
the loop, data streaming and vectorization may be applied to
the second loop according to the present principles.
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Pseudocode 7: Irregular memory
accesses in benchmark srad

for (i=0;i<rows;i+t+) {
for (j = 0; j < cols; j++) {
k=1*cols+j; Je =
ISt
// irregular memory accesses dN[k]
= J[iN[i] * cols + j] - Jc;
dS[k] = J[iS[i] * cols + j] - Jc;
dW[k] = J[i * cols + j * W[ j]] - Tc;
dE[k] = J[i * cols +j * E[j]] - Jc;
// the rest calculations
G2 = (dN[k]*dNT[k] + dS[k]*dS
[k] \ + dW[k]*dW[k] + dE[k]*
dE[Kk]) / (Je*Ic);
L = (dN[k] + dS[k] + dW[k] +
dE[k]) / Jc;

Pseudocode 8: Transformed irregular
loop from benchmark srad after splitting

for (i=0;i<rows;i+t+) {
for (j = 0; j < cols; j++) {
k = i*cols + J;
Je = Jk];
// irregular memory accesses
dN[k] = J[iN[i] * cols + j] - Je;
dS[k] = J[iS[i] * cols + j] - Jc;
dW[k] = J[i * cols + j * W[j]] - Je;
dE[k] = J[i * cols +j * E[j]] - Jc;

for (i=0;i<rows;i+t+) {
for (j = 0; j < cols; j++) {
// the rest calculations
G2 = (dN[k]*dN[K] + dS[k]*dS
[k] \ + dW[k]*dW[k] + dE[k]*
dE[Kk]) / (Je*Ic);
L = (dN[k] + dS[k] + dW[k] +
dE[k]) / Jc;

In one embodiment, the present principles may be applied
to arrays of structures. For example, Pseudocode 9 below
shows another common irregular access pattern. The
accesses may not be continuous because each array element
may be a structure. Regularization may be performed by
converting arrays of structures to structures of arrays accord-
ing to the present principles.

Pseudocode 9: Array of structures

for (i=0;i<N;i++ {
Bli].a = task(A[i].a);
B[i].b = task(A[i].b);
Bli].c = task(A[i].c);
¥

In one embodiment, pipelining regularization with data
transfer and computation may be performed according to the
present principles. After regularization, data streaming may
be applied to the loop. To save the regularization overhead,
regularization may be done in parallel with data transfer and
computation. More specifically, the regularization of block
i+2 can be done in parallel with the data transfer of block i+1
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and the computation of block i. The only extra overhead
caused by regularization may be the time for regularizing the
first data block.

It is noted that while the above embodiments and appli-
cations are discussed in detail above, it is contemplated that
other sorts of embodiments and applications may also be
applicable to the systems and methods according to the
present principles.

Referring now to FIG. 3, a block/flow diagram illustra-
tively depicting a system/method for compiler optimization
using a shared memory mechanism for transferring large
pointer based data structures between a CPU and a MIC is
illustratively depicted in accordance with the present prin-
ciples. In one embodiment, input may be received in block
302 on the CPU side 301, and one or more large buffers with
a predefined size (e.g., 200 MB or larger) may be allocated
on a CPU in block 304. Shared objects used in the original
code may be allocated in the preallocated large buffers in
block 306, and if an offload loop is encountered, loops may
be offloaded onto one or more MICs 309 by copying
pre-allocated buffers to the one or more MICs in block 310,
and creating a table delta where each table entry may store
the base address difference of a pair of CPU and MIC buffer
in block 312. Pointer operations may be performed on the
MIC in block 314 on the MIC side 311. Buffers may be
copied back to the CPU in block 316, and the process may
complete in block 318 according to one embodiment of the
present principles.

In one embodiment, a shared memory mechanism for
transferring large pointer-based data structures between the
CPU and the MIC according to the present principles may
enable Direct Memory Access (DMA) for transferring
pointer-based data structures between the CPU and MIC.
Memory utilization may be improved when pointer-based
data structures are employed. In other words, when a data
structure is small, most memory space may be left on the
MIC for other use. When a data structure is large, all, or
nearly all of the MIC memory space may be employed. A
novel pointer implementation to enable rapid pointer trans-
lation between the CPU and MIC memory spaces may also
be employed according to the present principles.

It is noted that Intel® MYO may provide shared memory
abstraction to support transferring complicated data struc-
tures such as pointer-based data structures between the CPU
and MIC. Pseudocode 2 shows a MYO example of a shared
pointer-based data structure from benchmark ferret. Key-
word Cilk shared is used to annotate a shared object or
pointer. The current MYO may implement the virtual shared
memory using a scheme similar to page fault handling.
Shared data structures may be copied on the fly at the page
level. When a shared variable is accessed on the MIC, its
entire page is copied to the MIC memory. The scheme is
very slow when copying a large data structure. This is
because the page granularity is too small for a large data
structure. Direct memory access (DMA) is underutilized and
the large number of page faults may incur huge handling
overhead in this situation. An example of a MYO with a
shared data structure from benchmark ferret is shown in
Pseudocode 10 below.

Pseudocode 10: MYO example of shared
data structure from benchmark ferret

Cilk shared struct cass table {
Cilk shared struct cass env t *env;
Cilk shared void* private;
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-continued

Pseudocode 10: MYO example of shared
data structure from benchmark ferret

Cilk shared cass vecset cfg t *cfg;
Cilk shared cass map t * map;
Cilk shared Array TYPE(struct
cass table *) children;

} cass table t;

In one embodiment, when employing the present prin-
ciples, data transfer with larger granularity can greatly
improve the performance when the loop is dealing with a
large data structures. The present principles may be
employed to improve the performance of data transfer for a
large pointer-based data structure. As shown in Pseudocode
10 below, the present principles may pre-allocate large
buffers for holding the shared data structure. Data objects
may be created continuously in the preallocated buffers.
When offloading a loop using the data structure, the entire
data structure (e.g., the entire pre-allocated buffers) may be
copied to the MIC memory. When a shared object is
accessed on the MIC, the system/method according to the
present principles does not need to check its state since the
entire data structure has been copied to the MIC memory.
Therefore, the accesses to shared objects using the present
principles is faster than MYO. Furthermore, the present
principles may make full use of DMA since the data may be
transferred in larger chunks.

Advantages of embodiments of the present principles will
be illustratively depicted in reference to solving two chal-
lenges for simplicity of illustration: how the buffers may be
pre-allocated to minimize memory usage on the MIC, and
how the links between objects may be preserved after being
copied to the MIC. These solutions will be discussed in more
detail below.

It is noted that an effective buffer allocation strategy
should include at least two conditions: (1) The memory
usage on the MIC should be minimized when the data
structure is small; and (2) the entire memory space on the
MIC should be able to be fully utilized when the data
structure is large. The present principles may employ a novel
buffer allocation strategy which includes creating one or
more sets of separate buffers. More specifically, one buffer
with a predefined size may be created at the beginning.
When the buffer is full, another buffer of the same size may
be created to hold new objects. In this way, there exists one
smaller buffer when the data structure is small. When the
data structure grows larger, the entire memory space on the
MIC may be fully utilized. In addition, in one embodiment
according to the present principles, it is not necessary to
move data when a new buffer is allocated.

In one embodiment, after a data structure is copied to the
MIC memory, the links between objects may be preserved to
ensure the correctness of the loop execution. The de-refer-
encing of the pointers on the MIC is a challenging problem
since the CPU and MIC may have two separate memory
spaces. The situation may become increasingly complicated
because of the discontinuous buffers that may be employed
according to the present principles.

In one embodiment, since the program may start on the
CPU, all pointers may initially store CPU memory
addresses. For simplicity of illustration, all shared pointers
may be restricted (e.g., the pointers annotated with Cilk
shared) to storing CPU memory addresses throughout the
execution, even on the MIC. Then, when a shared pointer is
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de-referenced after the data structure is copied to the MIC,
the CPU memory address may be mapped to the correspond-
ing MIC memory address. In one embodiment, to do so,
when the buffers that contain the data structure are copied to
the MIC memory, a table delta may be created. The table size
may be the number of buffers we have copied to the MIC.
Each table entry may store the base address difference of two
corresponding buffers (e.g., one on the CPU and the other on
the MIC). When a shared pointer on the MIC is de-refer-
enced, it may first be identified which buffer to which the
pointer points, and then the corresponding home address
difference may be added to the pointer value.

It is noted that identitying the buffer a pointer points to
based on its value is costly. It involves a set of comparison
operations with the worst time complexity linear to the
number of buffers. To fast locate the pointed buffer, we add
a 1-byte field bid to each pointer and object annotated with
Cilk shared. The bid field of a pointer stores the ID of the
pointed buffer while the bid field of an object stores the 1D
of the buffer it is located in. With this augmentation, we can
directly get the buffer ID from a pointer’s bid field when it
is being dereferenced. The bid field of an object is assigned
when it is created. Table 3 summarized the pointer opera-
tions on the CPU and MIC

Referring now to FIG. 4, with continued reference to
FIGS. 1-3, a system/method for compiler optimization is
illustratively depicted in accordance with the present prin-
ciples. The system 401 may include a workstation or other
system. The system 401 may be a general purpose, or special
purpose computer, and preferably includes one or more
processors and/or coprocessors 412 and memory 405 for
storing applications, modules, and other data.

In one embodiment, the system 401 may include one or
more displays 410 for viewing. The displays 410 may permit
a user to interact with the system 401 and its components
and functions. This may be further facilitated by a user
interface 414, which may include a mouse, joystick, or any
other peripheral or control to permit user interaction with the
system 401 and/or its devices. It should be understood that
the components and functions of the system 401 may be
integrated into one or more systems or workstations.

In one embodiment, the system 401 may receive input in
block 403 according to the present principles. Data depen-
dencies in a candidate loop, data elements used in each
iteration for all arrays may be identified, and memory and/or
buffers may be allocated using the identification and allo-
cation module 402, as discussed above in reference to FIGS.
1-3. One or more loops may be created using the loop
creation module 404, and one or more loops may be profiled
(e.g, to find a proper number (m) where data transfer and
computation for m iterations may take the same amount of
time) using a profile module 406. Code may be inserted
using a code insertion module 408, as discussed above in
reference to FIGS. 1-3, and a calculation module 416 may be
employed to calculate a one or more buffer sizes for an array.
In one embodiment, an offloading module 420 may be
employed for offloading to, for example, MICs and/or
CPUs, and output 407 may be produced and/or sent in
accordance with the present principles.

In one embodiment, input 403 may be received, and one
or more loop heads may be regularized, and some or all array
access in the loop may be changed accordingly using a
regularization module 422. Some or all irregular array
accesses in a candidate loop that do not use the loop index
1 as the array index may be identified using an identification
and allocation module 402. A checking module 424 may be
employed to check if the value of f(i) may be obtained
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before entering a loop for one or more irregular accesses
A[f(1)]. Code may be inserted, and some or all A[f(i)] may
be replaced with A'[i] in the loop using a code insertion
module 408, as discussed above in reference to FIG. 2. If a
last irregular access is not encountered after the inserting
and replacing, the checking, inserting, and replacing may
again be performed by the checking module 424 and the
code insertion module 408. If a last irregular access is
encountered, then data streaming may be automatically
applied using a data streaming module 428 in accordance
with the present principles, as discussed above in reference
to FIGS. 1-3. A thread creation module 426 may then create
threads on, for example, the CPU, to perform the code
inserted by the code insertion module 408 in parallel with
the original loop according to the present principles.

In one embodiment, a transfer module 418 may be
employed to transfer large pointer-based data structures
between a CPU and MIC according to the present principles.
One or more large buffers with predefined size may be
allocated on the CPU, and shared objects may be allocated
in the pre-allocated large buffers using an identification and
allocation module 402. Loops may be offloaded onto MICs
using an offloading module 420, and pre-allocated buffers
may be copied to MICs using a copy/transfer module 418.
A thread/table creation module 426 may be employed to
create a table delta where each table entry may store a base
address difference of a pair of CPU and MIC buffer, pointer
operations may be performed using a pointer module 430,
and buffers may be copied back to a CPU from a MIC using
a copy/transfer module 418 in accordance with one embodi-
ment of the present principles.

It is noted that while the above-mentioned system and
modules are illustratively provided, it is contemplated that
other sorts of systems and modules may also be employed
according to the present principles.

The foregoing is to be understood as being in every
respect illustrative and exemplary, but not restrictive, and
the scope of the invention disclosed herein is not to be
determined from the Detailed Description, but rather from
the claims as interpreted according to the full breadth
permitted by the patent laws. Additional information is
provided in an Appendix to the application. It is to be
understood that the embodiments shown and described
herein are only illustrative of the principles of the present
invention and that those skilled in the art may implement
various modifications without departing from the scope and
spirit of the invention. Those skilled in the art could imple-
ment various other feature combinations without departing
from the scope and spirit of the invention. Having thus
described aspects of the invention, with the details and
particularity required by the patent laws, what is claimed and
desired protected by Letters Patent is set forth in the
appended claims.

What is claimed is:

1. A method for source-to-source transformation for com-
piler optimization for one or more many integrated core
(MIC) coprocessors, comprising:

identifying data dependencies in one or more candidate

loops and data elements used in each iteration for one
or more arrays;
profiling the one or more candidate loops to find a proper
number m, wherein data transfer and computation for
m iterations take an equal amount of time;

creating an outer loop outside the candidate loop, wherein
each iteration of the outer loop executes m iterations of
the candidate loop; and
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performing data streaming, wherein the data streaming
comprises:
determining optimum buffer size for one or more
arrays, and inserting code before the outer loop to
create one or more optimum sized buffers;
overlapping data transfer between one or more central
processing units (CPUs) and the MICs with the
computation to hide data transfer overload;
reusing the buffers to reduce memory employed on the
MICs during the data transfer; and
reusing threads on the MICs to repeatedly launch
kernels on the MICs for asynchronous data transfer.
2. The method as recited in claim 1, further comprising
executing code segments on the MICs when an entire data
set is too large to be held in memory of the MICs.
3. The method as recited in claim 1, wherein data is
transferred in a plurality of small blocks, the small blocks
being smaller than an entire chunk of the data.
4. The method as recited in claim 1, wherein code is
inserted before the outer loop to asynchronously copy a first
segment of an array to a first MIC buffer.
5. The method as recited in claim 1, further comprising
inserting code to free all buffers after the outer loop.
6. The method as recited in claim 1, further comprising:
enabling direct memory access for transferring pointer-
based structures between the CPU and the MIC; and

optimizing memory utilization of the MIC by allocating
free memory space on the MIC for other use when a
data structure size is smaller than memory space on the
MIC, and employing all memory space on the MIC
when a data structure size approaches the memory
space on the MIC.

7. A method for source-to-source transformation for com-
piler optimization for one or more many integrated core
(MIC) coprocessors, comprising:

regularizing irregular memory on a loop head of a can-

didate loop by reordering computations, and adjusting
array access according to the regularized irregular
memory to enable data streaming and vectorization on
the one or more MICs during data transfer;

identifying all irregular memory array accesses in a

candidate loop that do not use a loop index i as an array
index;
regularizing irregular memory array accesses automati-
cally, wherein array indices employed in all memory
access is set to the loop index i;

hiding regularization overhead by overlapping regulariza-
tion with the data transfer and the computations when
data streaming is employed;

determining optimum buffer size for one or more arrays,

and inserting code before an outer loop outside the
candidate loop to create one or more optimum sized
buffers;

overlapping data transfer between one or more central

processing units (CPUs) and the MICs with a compu-
tation to hide data transfer overload;

reusing the buffers to reduce memory employed on the

MICs during the data transfer; and

reusing threads on the MICs to repeatedly launch kernels

on the MICs for asynchronous data transfer.

8. The method as recited in claim 7, wherein the candidate
loop is split into a first and a second loop, wherein irregular
accesses are split into the first loop, and regular accesses are
split into the second loop.
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9. The method as recited in claim 8, wherein the data
streaming and vectorization is performed on the second loop
after the candidate loop is split.
10. The method as recited in claim 7, further comprising
creating threads on a central processing unit (CPU) to
perform operations in parallel with the candidate loop.
11. The method as recited in claim 7, further comprising:
enabling direct memory access for transferring pointer-
based structures between a CPU and the MIC; and
optimizing memory utilization of the MIC by allocating
free memory space on the MIC for other use when a
data structure size is smaller than memory space on the
MIC, and employing all memory space on the MIC
when a data structure size approaches the memory
space on the MIC.
12. A system for source-to-source transformation for
compiler optimization for one or more many integrated core
(MIC) coprocessors, comprising:
an identification module configured to identify data
dependencies in one or more candidate loops and data
elements used in each iteration for one or more arrays;
a profiling module configured to profile the one or more
candidate loops to find a proper number m, wherein
data transfer and computation for m iterations take an
equal amount of time;
a loop creation module configured to create an outer loop
outside the candidate loop, wherein each iteration of
the outer loop executes m iterations of the candidate
loop;
a data streaming module configured to perform data
streaming, wherein the data streaming comprises:
determining optimum buffer size for one or more
arrays, and inserting code before the outer loop to
create one or more optimum sized buffers;

overlapping data transfer between one or more central
processing units (CPUs) and the MICs with the
computation to hide data transfer overload;

reusing the buffers to reduce memory employed on the
MICs during the data transfer; and

reusing threads on the MICs to repeatedly launch
kernels on the MICs for asynchronous data transfer.

13. The system as recited in claim 12, further comprising
executing code segments on the MICs when an entire data
set is too large to be held in memory of the MICs.

14. The system as recited in claim 12, wherein data is
transferred in a plurality of small blocks, the small blocks
being smaller than an entire chunk of the data.

15. The system as recited in claim 12, wherein code is
inserted before the outer loop to asynchronously copy a first
segment of an array to a first MIC buffer.

16. The system as recited in claim 12, wherein code is
inserted to free all buffers after the outer loop.

17. The system as recited in claim 12, wherein direct
memory access is employed to transfer pointer-based struc-
tures between the CPU and the MIC, and memory utilization
of'the MIC is optimized by allocating free memory space on
the MIC for other use when a data structure size is smaller
than memory space on the MIC, and employing all memory
space on the MIC when a data structure size approaches the
memory space on the MIC.
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